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WHEN IS THE UNION OF TWO UNIT INTERVALS A
SELF-SIMILAR SET SATISFYING THE OPEN SET CONDITION?

DE-JUN FENG, SU HUA, AND YUAN JI

Abstract. Let Uλ be the union of two unit intervals with gap λ. We show that Uλ

is a self-similar set satisfying the open set condition if and only if Uλ can tile an interval

by finitely many of its affine copies (admitting different dilations). Furthermore each such

λ can be characterized as the spectrum of an irreducible double word which represents

a tiling pattern. Some further considerations of the set of all such λ’s, as well as the

corresponding tiling patterns, are given.

1. Introduction

Let {Sjx = cjx + dj}m
j=1 be an iterated function system (IFS) on R such that

|cj| < 1 for all 1 ≤ j ≤ m. Due to Hutchinson [4], there is a unique non-empty

compact set K ⊂ R such that

K =
m⋃

j=1

Sj(K).

The set K is called the self-similar set generated by the IFS {Sj}m
j=1. It is easy to

analyze the geometric structure and calculate the dimensions of K when the IFS

{Sj}m
j=1 satisfies the so-called open set condition (OSC): there exists a non-empty

bounded open set U ⊂ R such that

m⋃
j=1

Sj(U) ⊂ U

with the union disjoint. There are some equivalent definitions for the OSC (see, e.g.

[10]). Nevertheless, it seems that there is no generic finite algorithm to determine

whether a given IFS satisfies the OSC. Without confusion, we will say that a self-

similar set satisfies the open set condition if it is generated by an IFS satisfying
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the open set condition. In particular, we say that a set E is a SSOSC if E is a

self-similar set satisfying the open set condition.

It arises a much natural and fundamental problem that when a classic geometric

object is a SSOSC. To our best knowledge, so far this problem has not been addressed

and studied. In this paper we just consider some very special and simple cases. For

λ ≥ 0, let Uλ = [0, 1]∪ [1 + λ, 2 + λ] denote the union of two unit intervals with gap

λ ≥ 0. We would like to know for which parameter λ, Uλ is a SSOSC. The question,

to our surprise, is significantly more complicated than what we had anticipated. In

this paper we present some partial answers.

To state our results, we first introduce some notations. For any integer n ≥ 2,

a word w = w1 · · ·w2n over some alphabet is called an n-letter double word if each

letter in w appears exactly twice. Especially let Ωn denote the set of all n-letter

double words over the alphabet {1, . . . , n}. For each word w ∈ Ωn, we associate it

with an n× n matrix Mw = (mi,j)1≤i,j≤n in the following way:

(1.1) mi,j =

{
0, if i = j,

occurence of j between the two letters i’s in w, otherwise.

We call Mw the incidence matrix of w. For example, let w = 123213. Then

Mw =




0 2 1

0 0 1

1 1 0


 .

For each w ∈ Ωn, we denote ρ(w) := ρ(Mw) the spectral radius of Mw. Since Mw

is non-negative, ρ(w) is just the largest eigenvalue of Mw (see, e.g., [5]). Without

confusion we just call ρ(w) the spectrum of w. For any finite double word w (not

necessary over the alphabet {1, . . . , n}) we can still define the incidence matrix and

the spectrum ρ(w) in the similar way. For each n ∈ N, set

Λn = {ρ(w) : w ∈ Ωn}.
Our first result can be formulated as follows:

Theorem 1.1. For λ ∈ [0, +∞), let Uλ = [0, 1]∪ [1+λ, 2+λ]. Then Uλ is a SSOSC

if and only if λ ∈ Λ :=
⋃

n≥1 Λn.

We should point out that for each λ ≥ 0, Uλ is always a self-similar set, not

necessary to be a SSOSC. To see it, we may assume λ > 0 since the case λ = 0 is

trivial. Choose an integer m ≥ λ. Then the set
⋃m

i=0(Uλ + i) is just the interval

[0, 2 + m + λ], where Uλ + i denotes the set {x + i : x ∈ Uλ}. It follows that
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[0, 1] =
⋃m+1

j=1 φj(Uλ), where φj(x) = x+j−1
2+m+λ

. Hence Uλ satisfies the self-similar

relationship Uλ =
⋃2m+2

j=1 φj(Uλ), where φm+1+j(x) = φj(x)+1+λ for 1 ≤ j ≤ m+1.

Theorem 1.1 gives a necessary and sufficient characterization for those λ such

that the corresponding Uλ are SSOSC. For each n, the set Λn can be determined by

a finite algorithm since Ωn has only finitely many elements. Furthermore we have

Λn ⊂ Λn+1. To see it, for any word w ∈ Ωn, let w′ be the word obtaining from w

by adding the letters n + 1 to the upper-most left-hand side and the upper-most

righthand side of w respectively. By a simple observation of their incidence matrices

we see that these two words have the same spectrum, i.e., ρ(w′) = ρ(w). As we

know, any element in Λ is the spectral radius of a non-negative integral matrix. Thus

it must be a non-negative algebraic integer not less than its conjugates in modulus

(see, e.g. [5]). However for a given such algebraic number, we have not yet found a

finite algorithm to determine whether or not it belongs to Λ. In fact we have little

understanding about the structure of the set Λ except the following result.

Theorem 1.2. The set Λ ∩ [0, 2] consists exactly of 0, 1, 2 and the spectra of the

words 123132, 12313424 and wn = w1 · · ·w2n(n = 3, 4, · · · ) defined by w1 = w3 = 1,

w2n−2 = w2n = n and w2j−2 = w2j+1 = j for 2 ≤ j ≤ n− 1.

In the following table we list the spectra of the words 123132, 12313424 and wn

for the first few n.

w Characteristic polynomial of Mw ρ(w)(≈)

123132 x3 − 2x− 2 1.769292

12313424 x4 − 3x2 − 2x− 1 1.919442

w3 x3 − 2x
√

2 ≈ 1.414213

w4 x4 − 3x2 + 1 (1 +
√

5)/2 ≈ 1.618033

w5 x5 − 4x3 + 3x
√

3 ≈ 1.732050

w6 x6 − 5x4 + 6x2 − 1 1.801937

w7 x7 − 6x5 + 10x3 − 4x 1.847759

w8 x8 − 7x6 + 15x4 − 10x2 + 1 1.879385

Table 1

It is quite natural to ask whether all Pisot numbers (i.e., algebraic integers greater

than 1 whose algebraic conjugates are all less than 1 in modulus) will be among the

spectra Λ. According to the above table, the answer is negative. Since ρ(wn) is

increasing (see Lemma 3.3), we can see, for example, that the smallest Pisot number
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(the largest root of x3 − x − 1 which is approximately 1.3247..., see [2]) is not in

Λ. Surely there are many other Pisot numbers are not in Λ, since the set of Pisot

numbers has a cluster point at the golden ratio
√

5 + 1)/2 (see, e.g. [2]), which

however is an isolated point in Λ.

We point out that our problem is related to the tiling theory. In fact, λ ∈ Λ if and

only if there exist finitely many affine maps ψi (i = 1, . . . , k) such that
⋃k

i=1 ψi(Uλ) is

a non-empty interval and ψi(int(Uλ)) are disjoint (see Proposition 2.1). In another

word, λ ∈ Λ if and only if Uλ can “tile” an interval by using finitely many of its

affine copies. In the above setting we admit dilations, which is different from the

usual sense of tiling (see, e.g. [7, 8]). We will see that for some parameters λ, Uλ

may tile an interval by several essentially distinct ways.

The paper is formulated as follows. We prove Theorem 1.1 in §2 and Theorem

1.2 in §3. In §4 we give some examples and present some unsolved questions.

2. The proof of Theorem 1.1

We first give several propositions.

Proposition 2.1. Let K be the union of finitely many closed intervals. Then K is a

SSOSC if and only if K can tile an interval by using finitely many of its affine copies,

i.e., there exist finitely many affine maps ψi (i = 1, . . . , k) such that
⋃k

i=1 ψi(K) is

a non-empty interval and ψi(int(K)) are disjoint.

Proof. We first prove the “if” part. Assume that there exists a family of affine maps

{φi}k
i=1 with k ≥ 2 such that φi(int(K)) are disjoint and the union U =

⋃k
i=1 φi(K)

is an interval. Since K itself is the union of several disjoint intervals, there exists

affine maps gj (j = 1, . . . , m) such that

K =
m⋃

j=1

gj(U),

where gj(U) are disjoint. Hence we have

K =
m⋃

j=1

k⋃
i=1

gj ◦ φi(K),

where gj ◦ φi(K) are disjoint. It implies that K is a SSOSC.
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Now we prove the “only if ” part. To avoid the trivial case we assume that K is

the union of at least two disjoint intervals and K satisfies the self-similar relation

K =
m⋃

i=1

Si(K),

where Si(int(K)) are disjoint. Take a large integer ` such that for each index i1 · · · i`,
the diameter of

Si1 ◦ Si2 ◦ · · · ◦ Si`(K)

is less than the smallest gap between the intervals in K. This guarantees that each

affine copy Si1 ◦Si2 ◦ · · · ◦Si`(K) is contained in one of the intervals in K. Let U be

an interval in K. Since

K =
⋃

i1i2···i`
Si1 ◦ Si2 ◦ · · · ◦ Si`(K),

we have

U =
⋃

i1i2···i`: Si1
◦Si2

◦···◦Si`
(K)⊂U

Si1 ◦ Si2 ◦ · · · ◦ Si`(K).

This shows that K can tile U by its affine copies. ¤
For k ≥ 2, let K = K (α1, . . . , αk; β1, . . . , βk−1) be the union of k ordered closed

intervals of lengths αi (i = 1, . . . , k) and gaps βi (i = 1, . . . , k− 1) respectively, with

inf(K) = 0. That is,

K (α1, . . . , αk; β1, . . . , βk−1) =
k⋃

i=1

[
i−1∑
j=0

(αj + βj), αi +
i−1∑
j=0

(αj + βj)

]

with convention α0 = β0 = 0. By definition, we have just Uλ = K(1, 1; λ).

Proposition 2.2. Let k ≥ 2. Suppose that K = K(1, . . . , 1; λ1, . . . , λk−1) is the

union of k intervals of unit length and gaps λ1, . . . , λk−1. Furthermore assume that

K is a SSOSC. Then all the numbers λi (1 ≤ i ≤ k) are Perron or Lind numbers

(i.e., positive algebraic integers whose conjugates are no greater in moduli).

Proof. Without loss of generality we show that λ1 is an algebraic integer. To see

it we let ∆ be the first gap interval of K. Since K is a SSOSC, by Proposition 2.1,

there exists a family of affine maps {φi(x) = ρix+di}m
i=1 such that φi(K) are disjoint

and their union is an interval. Therefore for each 1 ≤ i ≤ m, the interval φi(∆) can

be filled by some intervals of the form φj(U`) where j 6= i and U` is among the unit

intervals in K. By comparing the lengths of these intervals, we obtain

(2.2) |ρi|λ1 =
m∑

j=1

tij|ρj|, i = 1, . . . , m,
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where tij is the number of distinct unit intervals U` such that φj(U`) are contained

in φi(∆). Therefore λ1 is an eigenvalue of the m ×m non-negative integral matrix

(tij) associated with an eigenvector having positive entries. Hence λ1 is the spectral

radius of (tij). Due to Lind [9], λ1 is a Perron number (i.e., a positive algebraic

integer whose conjugates are smaller in moduli) or a Lind number (i.e., a positive

algebraic integer η whose conjugates |η′| ≤ η and at least one |η′| = η). ¤
We remark that Perron numbers were introduced by Lind in [9] and Lind numbers

were introduced by Lagarias in [6]. Furthermore the result of the above proposition

still remains valid if K is the union of several intervals of integral lengths.

Proof of Theorem 1.1.

Assume that Uλ = K(1, 1; λ) is a SSOSC. Then by Proposition 2.1, there exists a

family of affine maps {φi(x) = ρix + di}m
i=1 such that φi(Uλ) are disjoint and their

union is an interval W . Denote by I1 and I2 the two unit intervals in Uλ, and by

∆ the gap interval. Then the intervals φi(I`) (i = 1, . . . , m, ` = 1, 2) tile W . The

order of these intervals (from left to the right) induces an m-letter double word

w = w1w2 · · ·w2m, where wk = i if the k-th interval is φi(I1) or φi(I2). Using the

identical argument in the proof of Proposition 2.2, we have

(2.3) |ρi|λ =
m∑

j=1

tij|ρj|, i = 1, . . . ,m,

where tij is number of ` such that φj(I`) ⊂ φi(∆). According to the construction of

w, the matrix (tij) is just the incidence matrix Mw of w. Therefore λ ∈ Λm.

Now we turn to the proof of the reverse part of the theorem. Assume that λ ∈ Λm

for some m ∈ N. Then λ is the spectral radius of the incidence matrix Mw of some

m-letter double word w = w1 · · ·w2m. We assume that λ > 0, otherwise there is

nothing to prove. Since Mw is non-negative, Mw has a nonnegative eigenvector

(ρ1, . . . , ρm) corresponding to λ (see, e.g., [5, Theorem 8.3.1].) Now we construct

a family of intervals {I(j)
i : 1 ≤ i ≤ m, 1 ≤ j ≤ 2} in the following inductive way.

Let J1 be the interval (or point) of length ρw1 with left endpoint 0. Label J1 as

I
(1)
w1 . Assume Jk has been constructed well. Then Jk+1 is the interval of length ρwk+1

adjacent to Jk from the right hand side. Label Jk+1 as I
(j)
wk+1 , where j = 2 if there is a

s < k+1 such that ws = wk+1, and j = 1 otherwise. The above construct guarantees

that for each i with ρi 6= 0, the union
⋃2

j=1 I
(j)
wi is an affine copy of Uλ. Hence the

affine copies of Uλ can tile an interval. By proposition 2.2, Uλ is a SSOSC. ¤
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1 2 1 3 2 3 1 2 3 2 3 1

Figure 1. The graph representations of 121323 and 123231

Remark 2.3. As an analogue, we may also give a necessary and sufficient condition

for the parameter λ such that the set K = K(m,n, λ) is SSOSC when m,n ∈ N are

given.

3. The proof of Theorem 1.2

We first introduce some definitions. A double word w is said to be reducible if

there exists a strict sub-word w′ of w such that w′ is a double word. Conversely,

w is said to be irreducible if it is not reducible. For instance, the word 123231 is

reducible whilst 123213 is irreducible.

There is an intuitive way to determine the irreducibility of a given double word.

To see it, let w = w1 · · ·w2n be a double word. We distribute 2n points on the

real line and label them from left to right by the ordered letters in w. Then we

connect each pair of points, which are labeled by the same letter, by a half circle.

Then, the union of this collection of half circles, denoted as Γ(w), is called the graph

representation of w. In Figure 1, we give the graph representations of the words

121323 and 123231 respectively.

It is rather easy to see that

Lemma 3.1. A double word w is irreducible if and only if its graph representation

Γ(w) is connected.

We have another equivalent way to describe the irreducibility of a double word.

Recall that a n × n non-negative matrix A = (aij) is called irreducible if for any

i, j ∈ {1, . . . , n}, there exists a word i1i2 · · · in over {1, . . . , n} such that i = i1, j = in

and aikik+1
> 0 for all 1 ≤ k ≤ n− 1.

Lemma 3.2. A double word w is irreducible if and only if its incidence matrix is

irreducible.
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Proof. Without loss of generality we assume that w ∈ Ωn. First assume that w

is irreducible. By Lemma 3.1, the graph representation Γ(w) is connected. For

i = 1, . . . , n, let γi denote the half-circles connecting the letters i. Then for each

pair of index i, j, there exists a connected path γi1 , . . . , γin from γi to γj. That is,

i1 = i, in = j and γik intersects γik+1
for all 1 ≤ k ≤ n − 1. Observe that γik

intersecting γik+1
implies that in the word w there is a letter ik+1 appears in the two

letters ik, and thus mikik+1
> 0. Therefore Mw is irreducible.

Now assume that w is reducible. Then w has a strict sub-word w′ which is

double. Let T denotes the set of letters appearing in w′. Then by the definition

of Mw, for any i ∈ T and j ∈ {1, . . . , n}\T , mi,j = 0. This implies that Mw is

reducible. To see it, take i ∈ T and j ∈ {1, . . . , n}\T . Let i1 · · · in be an arbitrary

word over {1, . . . , n} with i1 = i and in = j. Let k be the smallest integer such that

ik ∈ {1, . . . , n}\T . Then k > 1 and ik−1 ∈ T . Thus mik−1ik = 0. Therefore Mw is

reducible. This finishes the proof of the lemma. ¤
The following lemma is needed in our proof of Theorem 1.2.

Lemma 3.3. Let w be an irreducible double word in Ωn (n ≥ 2). Then there exists

j ∈ {1, . . . , n} such that the word w′, obtained by removing the two letters j from

w, is still irreducible. Furthermore, ρ(w) > ρ(w′).

Proof. Let Γ(w) be the graph representation of w. By Lemma 3.1, Γ(w) is con-

nected. Then there is a half-circle γ in Γ(w) such that removing γ from Γ(w),

we get another connected graph representation, which implies the first part of the

lemma. This fact comes from a more general result in graph theory, namely given

any connected graph one can always remove a vertex and all edges connecting it

so that the remaining graph is also connected (for a proof, see e.g. [1, Theorem

3.1.10]). To prove the second part, one observes that Mw′ is just obtained from

Mw by removing the entries of the j-th column and the j-th row of Mw. Since by

Lemma 3.2 Mw is irreducible, we have ρ(Mw) > ρ(Mw′) (see, e.g., [5, Exer 15, p

515]).

¤

Proposition 3.4. λ ∈ Λ if and only if λ is the spectrum of some finite irreducible

double word.

Proof. The “if” part is trivial. We only need to show the “only if” part. Assume

that λ ∈ Λ. If λ = 0, then λ is the spectrum of the word 11 which is irreducible.

Now assume λ > 0. By Theorem 1.1 and Proposition 2.1, Uλ can tile an interval
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by its affine copies. Let k be the smallest integer such that there are affine maps

ψi (i = 1, . . . , k) such that
⋃k

i=1 ψi(Uλ) is a non-empty interval W and ψi(int(Uλ))

are disjoint. Let I1, I2 be the two unit intervals in Uλ. Then W is just tiled by the

intervals ψi(Ij), i = 1, . . . , k, j = 1, 2. Labeling each interval ψi(Ij) in W by the

letter i, we obtain a double word w ∈ Ωk by the natural order (from left to right)

of ψi(Ij) appearing in W . By the minimality of k, w is irreducible. Since if w has a

strict sub-word w′ which is double, then the corresponding intervals ψi(Ij) (j = 1, 2,

and i appears in w′) will tile an interval, with a smaller number of affine copies of

Uλ than k, which leads to a contradiction. By (2.3), λ is just the spectrum of w.

This finishes the proof. ¤
Let Ω′

n denote the set of all irreducible double words over {1, . . . , n} and set

Λ′n = {ρ(w) : w ∈ Ω′
n}.

By Proposition 3.4, Λ =
⋃∞

n=1 Λ′n. To describe the structure of Ω′
n and Λ′n, we

first introduce some definitions. An operator T : Ω′
n → Ω′

n is called a permuta-

tion operator if there is a permutation σ on {1, . . . , n} such that T (w1 · · ·w2n) =

σ(w1) · · · σ(w2n) for any w = w1 · · ·w2n ∈ Ω′
n. Similarly T is called a reflection

if T (w1w2 · · ·w2n) = w2nw2n−1 · · ·w1. Furthermore an operator T is called an el-

ementary operator if it is the composition of finitely many the above two kind of

operators. Two words w,w′ ∈ Ω′
n are said to be equivalent and denoted by w′ ∼ w

if there is an elementary operator T such that w′ = T (w). It is easy to see that

w ∼ w′ if and only if their graph representations are either the same or differ by a

mirror reflection. It is trivial to see that the only element in Ω′
1/ ∼ is the word 11

which has the spectrum 0, and the only element in Ω′
2/ ∼ is the word 1212 which

has the spectrum 1. In the following two tables we list all representative elements in

Ω′
n/ ∼ for n = 3, 4, together with their characteristic polynomials and the numerical

estimations of the spectra.

w Characteristic polynomial of Mw ρ(w)(≈)

121323 x(x2 − 2) 1.414214

123123 (x− 2)(x + 1)2 2.000000

123132 x3 − 2x− 2 1.769292

Table 2. Elements in Ω′
3/ ∼

Lemma 3.5. Let wn (n ≥ 3) be the words defined in Theorem 1.2. Then ρ(wn) < 2

and limn→∞ ρ(wn) = 2.
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w Characteristic polynomial of Mw ρ(w)(≈)

12132434 (x2 − x− 1)(x2 + x− 1) 1.618034

12134234 (1 + x)(x3 − x2 − 3x + 1) 2.170086

12134243 x(x− 2)(1 + x)2 2.000000

12134324 x4 − 3x2 − 2x + 1 1.940393

12314234 x(1 + x)(x2 − x− 4) 2.561553

12314243 (x2 − 2x− 1)(1 + x)2 2.414214

12314324 x(x3 − 4x− 4) 2.382976

12314342 x4 − 3x2 − 1− 2x 2.052300

12324143 (x2 + x + 1)(x2 − x− 3) 2.302776

12341234 (x− 3)(1 + x)3 3.000000

12341243 (1 + x)(x3 − x2 − 4x− 4) 2.875130

12341324 (1 + x)(x3 − x2 − 4x− 4) 2.875130

12341342 (1 + x)(x3 − x2 − 3x− 3) 2.598675

12341423 (1 + x)(x3 − x2 − 3x− 3) 2.598675

12341432 (1 + x)(x3 − x2 − 2x− 4) 2.467504

12342143 (x2 + 2x + 2)(x2 − 2x− 2) 2.732051

12342413 x4 − 3x2 − 4x− 1 2.234023

Table 3. Elements in Ω′
4/ ∼

Proof. It is easy to observe that for each n ≥ 3, the sum of entries in the j-th row

of Mwn is equal to 2 for 2 ≤ j ≤ n− 1, and 1 for j = 1, n. Since Mwn is irreducible,

by Gerschgorin’s disk theorem, ρ(wn) < 2. Since wn is obtained by removing the

two letters (n+1) from wn+1, by Lemma 3.3, we have ρ(wn+1) > ρ(wn). Therefore,

the limit

a = lim
n→∞

ρ(wn)

exists and 1 < a ≤ 2. In the following we show that a = 2.

Let fn(t) = det(tIn −Mwn) be the characteristic polynomial of the matrix Mwn .

It is easy to show by mathematical induction that the sequence {fn} satisfies the

following recurrence relation: fn+2(t) = tfn+1(t)−fn(t) for n ≥ 3. Taking t = a and

un = fn(a), we have

(3.4) un+2 = aun+1 − un, n ≥ 3.

Since ρ(wn) is the largest positive root of the monoid polynomial fn and ρ(wn) < a,

we have un = fn(a) > 0. Assume that a is strictly smaller than 2. Then the
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polynomial x2 = ax− 1 has only two imaginary roots. By a well-known result (see ,

e.g., [3]), there are infinitely many terms in {un} taking negative values, which leads

to a contradiction. ¤
Proof of Theorem 1.2. By Proposition 3.4 and the above tables, it suffices to

prove the following claim:

Claim: For any n ≥ 5, the unique element in Ω′
n/ ∼ whose spectrum less than 2

is the word wn defined in Theorem 1.2.

To prove the claim, we first verify the claim directly for the case n = 5 by esti-

mating the spectra of elements in Ω′
5/ ∼ by Matlab (there are exact 135 elements).

Now we prove the claim for any n ≥ 5 by mathematical induction. Assume that the

claim is true for some n ≥ 5. Let un+1 be a word in Ω′
n+1/ ∼ such that ρ(un+1) < 2.

We show below that un+1 is just equivalent to wn+1. To see this, by Lemma 3.3,

un+1 is equivalent to a word u′n+1 in Ω′
n+1 which is obtained by adding two letters

n + 1 in a word un ∈ Ω′
n, and ρ(un+1) > ρ(un). Hence ρ(un) < 2 and thus un is

equivalent to wn. Without loss of generality we may take un = wn and assume that

un+1 is an irreducible word obtained by adding two letters n+1 in wn. If the letters

n + 1 are just added on the two sides of the first letter 1 in w ( or the last letter

n) respectively, then un+1 is just equivalent to wn+1. In other cases, we may either

delete the two letters 1 (this is the case that none of the two letters n+1 lie between

the two letters 1, or the first letter n + 1 lies between two 1’s and the second lies

between two n’s) or delete the two letters n from un+1 (this is the case that none

of the two letters n + 1 lie between the two n’s) to get an irreducible word u in Ωn

not equivalent to wn, which implies that ρ(un+1) > ρ(u) > 2 and contradicts the

assumption ρ(un+1) < 2. This finishes the proof of the claim. ¤

4. Examples and unsolved questions

We first give an example to show that for some parameters λ, Uλ may tile an

intervals in some essentially different ways.

Assume that Uλ can tile an interval by its affine copies ψi(Uλ), i = 1, . . . , n. Fur-

thermore assume that each strict subfamily of these copies can not tile an interval.

As in the proof of Proposition 3.4, we can use an irreducible word wn ∈ Ω′
n to

represent this tiling pattern. In the following example one can see that Uλ may have

different tiling patterns.

Example 4.1.

• λ = 2. Uλ has the tiling patterns 123123, 12134243, 121345435.
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• λ = 3. Uλ has the tiling patterns 12341234, 1231452453, 123241564635.

• λ =
√

2+1. Uλ has the tiling patterns 12314243, 1234254513, 121324565364.

In the table 4, we give all the elements in Ω′
6/ ∼ having ρw = 3.

w Characteristic polynomial of Mw

121342565346 (x− 1)(x− 3)(x + 1)4

121343564265 x2(x− 3)(x + 1)3

121345264653 x2(x− 3)(x + 1)3

121345426365 (x− 3)(x + 1)(x2 + x− 1)(1 + x + x2)

121345436256 x2(x− 3)(x + 1)3

121345462563 x2(x− 3)(x + 1)3

123124563564 (x− 1)(x− 3)(x + 1)4

123124563645 (x− 1)(x− 3)(x + 1)4

123143526465 (x− 1)(x− 3)(x + 1)4

123143526546 (x− 1)(x− 3)(x + 1)4

123145356264 x2(x− 3)(x + 1)3

123241564635 x2(x− 3)(x + 1)3

123245364615 (x− 3)(x + 1)(x2 + x− 1)(x2 + x + 1)

123245365416 x2(x− 3)(x + 1)3

123413564652 x2(x− 3)(x + 1)3

123425465163 x2(x− 3)(x + 1)3

Table 4. Elements w in Ω′
6/ ∼ such that ρw = 3

Now we give an example of a SSOSC which is the union of three unit intervals

admitting non-integer gaps.

Example 4.2. Let K = K(1, 1, 1; 1, 2λ + 1), where λ ≈ 2.5212 is the largest root of

the polynomial of x3−4x−6. Then K is a SSOSC. To see it, let K ′ = K ∪ (K +1).

Then K ′ = K(4, 2; 2λ) = 2K(2, 1; λ), which can tile an interval by the pattern

123213.

In the following we present some unsolved problems:

• Is there a finite algorithm to determine if or not λ ∈ Λ for any given λ?

• For each λ ∈ Λ, are there only finitely many words w in
⋃

n Ω′
n such that

ρ(w) = λ? In another word, does Uλ have at most finitely many tiling

patterns for any given λ? For instance, how about for λ = 3?
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• Is Λ closed? if not, does the closure of Λ contain non-empty interior?

• Can we determine, for example, when a polygon in the plane is a SSOSC?
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